Lógica Proposicional – Parte II

Raquel de Souza Francisco Bravo

e-mail: raquel@ic.uff.br

25 de outubro de 2016

Argumento Válido

Um argumento pode ser ser representado em forma simbólica como:

$$P_1 \wedge P_2 \wedge P_3 \wedge \cdots \wedge P_n \rightarrow Q$$

Onde P_1 , P_2 , ..., P_n são proposições dadas, chamadas de <u>hipóteses</u> (<u>premissas</u>) do <u>argumento</u>, e Q é a <u>conclusão</u> do argumento. Dizemos que $P_1 \wedge P_2 \wedge P_3 \wedge \cdots \wedge P_n$ <u>implica logicamente</u> Q ou Q pode ser <u>deduzido logicamente</u> de $P_1 \wedge P_2 \wedge P_3 \wedge \cdots \wedge P_n$.

Argumento Válido

A fbf proposicional $P_1 \wedge P_2 \wedge P_3 \wedge \cdots \wedge P_n \rightarrow Q$ é um <u>argumento</u> <u>válido</u> quando for uma tautologia.

Para testar se $P_1 \wedge P_2 \wedge P_3 \wedge \cdots \wedge P_n \rightarrow Q$ é uma tautologia, podemos:

- tabela-verdade
- regras de dedução

- Modificam uma fbf de modo a preservar seu valor lógico;
- Começamos com as hipóteses $P_1 \wedge P_2 \wedge P_3 \wedge ... \wedge P_n$ (supostas verdadeiras) e tenta aplicar as regras de dedução para chegar a conclusão Q.

Sequência de Demonstração

Uma <u>sequência de demonstração</u> é uma sequência de fbf's na qual cada fbf é uma hipótese (premissa) ou o resultado de se aplicar uma das regras de dedução do sistema formal a fbf's anteriores na sequência.

Regras de Dedução para a Lógica Proposicional

Equivalências

Permitem que fbf's individuais sejam reescritas mantendo o mesmo valor lógico.

Inferência

Permitem a dedução de novas fbf's a partir de fbf's anteriores na sequência de demonstração.

Regras de Equivalência

Expressão	Equivalente a	Nome/Abreviação da Regra
$P \wedge Q$	$Q \wedge P$	Comutatividade - com
$P \lor Q$	$Q \vee P$	
$(P \lor Q) \lor R$	$P \lor (Q \lor R)$	Associatividade - ass
$(P \land Q) \land R$	$P \wedge (Q \wedge R)$	
¬(PVQ)	¬P∧¬Q	Leis de De Morgan – De Morgan
¬(P \ Q)	$\neg P \lor \neg Q$	_
$P \rightarrow Q$	$\neg P \lor Q$	Condicional - cond
P	¬ (¬ P)	Dupla negação - dn
$P \wedge (P \vee Q)$	P	Absorção – abs
$P \lor (P \land Q)$	P	

Regras de Equivalência

Expressão	Equivalente a	Nome/Abreviação da Regra
$P \wedge P$	P	Idempotente - idemp
$P \vee P$	P	
$P \wedge T$	P	Identidade - id
$P \vee F$	P	
$P \leftrightarrow Q$	$(P \rightarrow Q) \land (Q \rightarrow P)$	Bicondicional – bicond
$P \rightarrow Q$	$\neg Q \rightarrow \neg P$	Contrapositiva - cpos

Suponha que uma hipótese de um argumento proposicional pode ser simbolizada como:

$$(\neg A \lor \neg B) \lor C$$

Então, uma sequência de demonstração para o argumento poderia começar com os seguintes passos:

hip (hipótese)

1, De Morgan

2.
$$\neg$$
 (A \land B) \lor C Qonclusão
3. (A \land B) \rightarrow C

2, cond

Pipótese ou premissa

Regras de Inferência

As <u>regras de inferência</u> são regras lógicas que nos permitem deduzir proposições a partir de outras.

Dizemos que <u>A</u> é uma <u>regra de inferência</u> quando A → B é uma B tautologia.

Regras de Inferência

De	Podemos deduzir	Nome/Abreviação da Regra
$P, P \rightarrow Q$	Q	Modus Ponens – MP
$P \rightarrow Q$, $\neg Q$	¬P	Modus Tollens – MT
P , Q	$P \wedge Q$	Conjunção – <mark>conj</mark>
$P \wedge Q$	Р	Simplificação – simp
$P \wedge Q$	Q	
P	P∨Q	Adição – <mark>ad</mark>
$P \rightarrow Q$	$P \rightarrow (P \land Q)$	Absorção – <mark>abs</mark>
$P \lor Q$, $\neg P$	Q	Silogismo disjuntivo – SD
$P \lor Q$, $\neg Q$	P	

Regras de Inferência

De	Podemos deduzir	Nome/Abreviação da Regra
$P \rightarrow Q$, $Q \rightarrow R$	$P \rightarrow R$	Silogismo hipotético – SH
$P \rightarrow Q$, $R \rightarrow S$, $P \lor R$	$Q \vee S$	Dilema Construtivo – DC
$P \rightarrow Q$, $R \rightarrow S$, $\neg Q \lor \neg S$	¬ P ∨ ¬ R	Dilema Destrutivo – DD
$P \rightarrow Q$, $R \rightarrow Q$	$P \lor R \to Q$	Inferência por Casos – IC
$P \rightarrow Q \vee R$, $\neg R$	$P \rightarrow Q$	Inferência por Eliminação – IE

Regras de Equivalência X Regras de Inferência

 A regras de equivalência permitem substituição em qualquer direção;

$$Ex: (P \rightarrow Q) \leftrightarrow (\neg P \lor Q)$$

 As regras de inferência não funcionam em ambas as direções;

Ex:
$$P \rightarrow (P \lor Q)$$
 Verdadeiro
 $(P \lor Q) \rightarrow P$ Falso
 $(P \lor Q) \rightarrow Q$ Falso

$$A \land (B \rightarrow C) \land [(A \land B) \rightarrow (D \lor \neg C)] \land B \rightarrow D$$

$$A, (B \rightarrow C), (A \land B) \rightarrow (D \lor \neg C), B$$

$$D$$

$$A \land (B \rightarrow C) \land [(A \land B) \rightarrow (D \lor \neg C)] \land B \rightarrow D$$

- 1. A
- 2. $(B \rightarrow C)$
- 3. $[(A \land B) \rightarrow (D \lor \neg C)]$
- 4. B
- 5. C
- 6. A \wedge B
- 7. $(D \lor \neg C)$
- 8. $(\neg C \lor D)$
- 9. $C \rightarrow D$
- 10. D

- hip (hipótese)
- hip (hipótese)
- hip (hipótese)
- hip (hipótese)
- 2,4, MP
- 1,4, conj
- 3,6, MP
- 7, com
- 8, cond
- 5,9, MP

$$(P \land \neg Q) \land (Q \lor \neg R) \land (S \rightarrow R) \rightarrow P \land \neg S$$

$$P \land \neg Q, Q \lor \neg R, S \rightarrow R$$

$$P \land \neg S$$

$$(P \land \neg Q) \land (Q \lor \neg R) \land (S \rightarrow R) \rightarrow P \land \neg S$$

- 1. $P \land \neg Q$
- 2. $Q \lor \neg R$
- 3. $S \rightarrow R$
- 4. $\neg Q$
- 5. $\neg R \lor Q$
- 6. $R \rightarrow Q$
- 7. ¬ R
- 8. ¬S
- 9. P
- 10. $P \land \neg S$

- hip (hipótese)
- hip (hipótese)
- hip (hipótese)
- 1, simp
- 2, com
- 5, cond
- 4,6, MT
- 3, 7, MT
- 1, simp
- 8,9, conj

$$(P \lor \neg Q) \land (\neg Q \rightarrow R) \land (P \rightarrow S) \land \neg R \rightarrow S$$

1.
$$P \lor \neg Q$$

2.
$$\neg Q \rightarrow R$$

3.
$$P \rightarrow S$$

$$5. \neg (\neg Q)$$

$$(P \rightarrow Q) \land (Q \rightarrow \neg R) \land \neg (\neg R) \land P \lor (S \land T) \rightarrow S$$

1.
$$P \rightarrow Q$$

2.
$$Q \rightarrow \neg R$$

3.
$$\neg (\neg R)$$

4.
$$P \vee (S \wedge T)$$

8.
$$(S \wedge T)$$

$$(P \lor Q) \land (Q \to R) \land (P \to P) \land \neg P \to (R \land (P \lor Q))$$

$$P \lor Q, Q \to R, P \to P, \neg P$$

$$R \land (P \lor Q)$$

$$(P \lor Q) \land (Q \rightarrow R) \land (P \rightarrow P) \land \neg P \rightarrow (R \land (P \lor Q))$$

1.
$$P \vee Q$$

2.
$$Q \rightarrow R$$

3.
$$P \rightarrow P$$

$$4. \neg P$$

$$7. R \wedge (P \vee Q)$$

$$(P \lor Q) \land (Q \rightarrow R) \land (P \rightarrow P) \land \neg P \rightarrow (R \land (P \lor Q))$$

1.
$$P \vee Q$$

2.
$$Q \rightarrow R$$

3.
$$P \rightarrow P$$

4.
$$\neg P$$

7.
$$R \wedge (P \vee Q)$$

Demonstração Condicional

Suponha que o argumento que queremos provar tenha a forma:

$$P_1 \wedge P_2 \wedge P_3 \wedge \cdots \wedge P_n \rightarrow (R \rightarrow S)$$

onde a conclusão é uma implicação.

Ao invés de usar $P_1 \wedge P_2 \wedge P_3 \wedge ... \wedge P_n$ como premissas e inferir $R \rightarrow S$, o método dedutivo nos permite adicionar R como uma hipótese adicional e depois inferir S.

Em outras palavras, podemos provar:

$$P_1 \wedge P_2 \wedge P_3 \wedge \cdots \wedge P_n \wedge R \rightarrow S$$

- Vantagem: ? Nos dá mais uma premissa, isto é, munição para nossa demonstração;
 - Simplifica a conclusão desejada.

$$(A \to (A \to B)) \to (A \to B)$$

$$A \to (A \to B), A$$

$$B$$

1.
$$A \rightarrow (A \rightarrow B)$$

3.
$$A \rightarrow B$$

1.
$$\neg A \lor B$$

2.
$$B \rightarrow C$$

3.
$$A \rightarrow B$$

4.
$$A \rightarrow C$$

Usando a nova regra, temos:

- 1. ¬A V B
- 2. $B \rightarrow C$
- 3. A
- 4. B
- 5. C

- hip (hipótese)
- hip (hipótese)
- hip (hipótese)
- 1, 3, SD
- 2, 4, MP

Argumentos Verbais

Um argumento em português (Ex: os resumos de um advogado em um tribunal, uma propaganda ou um discurso político), formado por declarações simples, pode ser testado logicamente por um processo em duas etapas.

- Simbolize cada declaração usando fbf's proposicionais;
- Prove a validade do argumento construindo uma sequência de demonstração através das regras de dedução para a lógica proposicional.

Considere o argumento: "Se as taxas de juros caírem, o mercado imobiliário vai melhorar. A taxa federal de descontos vai cair, ou o mercado imobiliário não vai melhorar. As taxas de juros vão cair. Portanto, a taxa federal de descontos vai cair".

Usando a notação:

- J a taxa de juros vai cair
- I o mercado imobiliário vai melhorar
- F a taxa federal de descontos vai cair

Argumento fica:

$$(J \rightarrow I) \land (F \lor \neg I) \land J \rightarrow F$$

1.
$$J \rightarrow I$$

2.
$$F \lor \neg I$$

1.
$$J \rightarrow I$$

2.
$$F \lor \neg I$$

$$4. \neg I \lor F$$

5.
$$I \rightarrow F$$

6.
$$J \rightarrow F$$

Forma Normal Conjuntiva (FNC)

Um <u>literal</u> é uma fórmula atômica ou a negação de uma fórmula atômica.

• Ex:
$$L_1 = \neg r$$

 $L_2 = q$

Uma <u>cláusula</u> é uma disjunção de literais $L_1 \vee L_2 \vee ... \vee L_n$, onde n > 0 é um número natural indicando o tamanho da cláusula (número de literais).

• Ex:
$$C_1 = \neg p \lor q \lor r$$

 $C_2 = q \lor \neg r$
 $C_3 = q$
 $C_4 = \neg r$

Forma Normal Conjuntiva (FNC)

Uma fórmula A está na <u>Forma Normal Conjuntiva</u> (FNC) se ela é uma conjunção de cláusulas

$$A = \bigwedge_{k=1}^{m} (L_{1_k} \vee L_{2_k} \vee \ldots \vee L_{n_k})$$

= $(L_{1_1} \vee \ldots \vee L_{n_1}) \wedge (L_{1_2} \vee \ldots \vee L_{n_2}) \wedge \ldots \wedge (L_{1_m} \vee \ldots \vee L_{n_m})$

sendo m > 0 um número natural.

• Ex:
$$(\neg q \lor p \lor r) \land (\neg p \lor r) \land q \land (p \lor r) \land (\neg p \lor r) \land (p \lor \neg r)$$
.

$$C_1 = \neg q \lor p \lor r$$

$$C_2 = \neg p \lor r$$

$$C_3 = q$$

$$C_4 = \neg p \lor r$$

Forma Norma Conjuntiva (FNC)

```
Algoritmo 1: FNC
  Entrada: Fórmula A.
  Saída: Fórmula B em FNC tal que A \equiv B.
1 repita
      para todas as subfórmulas X, Y, Z \in A faça
\mathbf{2}
          se (X \to Y) redefina como (\neg X \lor Y)
3
          se \neg(X \lor Y) redefina como (\neg X \land \neg Y)
4
          se \neg(X \land Y) redefina como (\neg X \lor \neg Y)
5
          se \neg \neg X redefina como X
6
          se X \vee (Y \wedge Z) redefina como (X \vee Y) \wedge (X \vee Z)
      \mathbf{fim}
8
9 até não ocorrerem substituições
```

Ex: Seja a fórmula $p \to (q \land \neg (r \lor p))$, podemos transformá-la em um fórmula em FNC usando as equivalências descritas no Algoritmo 1. Começamos com a equivalência $(X \to Y) \Leftrightarrow (\neg X \lor Y)$.

Forma Norma Conjuntiva (FNC)

Ex: Seja a fórmula $p \to (q \land \neg (r \lor p))$, podemos transformá-la em um fórmula em FNC usando as equivalências descritas no Algoritmo 1. Começamos com a equivalência $(X \to Y) \Leftrightarrow (\neg X \lor Y)$.

$$p \rightarrow (q \land \neg (r \lor p)) \Leftrightarrow In$$

$$\Leftrightarrow \neg p \lor (q \land \neg (r \lor p)) \Leftrightarrow Le$$

$$\Leftrightarrow \neg p \lor (q \land (\neg r \land \neg p)) \Leftrightarrow Di$$

$$\Leftrightarrow (\neg p \lor q) \land (\neg p \lor (\neg r \land \neg p)) \Leftrightarrow Di$$

$$\Leftrightarrow (\neg p \lor q) \land ((\neg p \lor \neg r) \land (\neg p \lor \neg p)) \Leftrightarrow$$

$$\Leftrightarrow (\neg p \lor q) \land ((\neg p \lor \neg r) \land (\neg p \lor \neg p)) \Leftrightarrow$$

Implicação

Lei de De Morgan

Distributiva

Distributiva

Forma Norma Conjuntiva (FNC)

Uma fórmula A em FNC

$$A = (L_{11} \lor ... \lor L_{n1}) \land (L_{12} \lor ... \lor L_{n2}) \land ... \land (L_{1m} \lor ... \lor L_{nm})$$

pode ser escrita como um conjunto cujos elementos são as cláusulas de A

$$A = \{L_{11} \lor ... \lor L_{n1}, L_{12} \lor ... \lor L_{n2}, ..., L_{1m} \lor ... \lor L_{nm}\}.$$

Tal forma será chamada Forma Clausal.

Ex: A fórmula em FNC

$$A = (\neg p \lor q) \land (\neg p \lor \neg r) \land (\neg p \lor \neg p)$$

pode ser escrita como

$$A = {\neg p \lor q, \neg p \lor \neg r, \neg p \lor \neg p}$$

que é a sua forma clausal.

1. Justifique cada passo de demontração de:

$$(A \rightarrow (B \lor C)) \land \neg B \land \neg C \rightarrow \neg A$$

- 1. $A \rightarrow (B \lor C)$
- $2. \neg B$
- $3. \neg C$
- 4. $\neg B \land \neg C$
- 5. \neg (B V C)
- 5. $\neg A$

2. Justifique cada passo de demontração de:

$$\neg A \land B \land (B \rightarrow (A \lor C)) \rightarrow C$$

- 1. ¬A
- 2. B
- 3. $B \rightarrow (A \lor C)$
- 4. A V C
- 5. $\neg (\neg A) \lor C$
- 6. $\neg A \rightarrow C$
- 7. C

3. Use a lógica proposicional para provar que o argumento é válido

i.
$$\neg A \land (B \rightarrow A) \rightarrow \neg B$$

ii.
$$(A \rightarrow B) \land (A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow C)$$

iii.
$$((C \rightarrow D) \rightarrow C) \rightarrow ((C \rightarrow D) \rightarrow D)$$

iv.
$$(P \lor Q) \land \neg P \rightarrow Q$$

v.
$$P \land \neg P \rightarrow Q$$

vi.
$$(P \rightarrow Q) \land (\neg P \rightarrow Q) \rightarrow Q$$

vii.
$$\neg (A \land B) \land \neg (\neg C \land A) \land \neg (C \land \neg B) \rightarrow \neg A$$

4. Transforme as seguintes fórmulas proposicionais para FNC e dê a forma clausal de cada uma das fórmulas:

i.
$$((P \rightarrow Q) \rightarrow P) \rightarrow P$$

ii.
$$(\neg Q \rightarrow P) \rightarrow (P \rightarrow Q)$$

iii.
$$(P \rightarrow (Q \land (Q \rightarrow R))) \land (P \land \neg R)$$

iv.
$$\neg (P \rightarrow Q) \lor (R \rightarrow P)$$

v.
$$\neg(((P \lor \neg Q) \to R) \to (P \land R))$$

vi.
$$(A \land \neg B) \rightarrow \neg (A \rightarrow B)$$

vii.
$$(A \land \neg B) \leftrightarrow \neg (A \rightarrow B)$$

viii.
$$((A \leftrightarrow B) \land \neg A) \rightarrow \neg B$$